Orbits and bungee sets

Dan Nicks

University of Nottingham

September 2021

Joint work with Dave Sixsmith

PART 1: Orbits

- Usually, given $f: X \to X$ we study the orbits $(f^n(x))_{n \ge 0}$ for $x \in X$.
- Now reverse this: Given a sequence, is it an orbit for some f?

PART 2: Bungee sets

- The *bungee set* of *f* is the set of points for which the orbit has both bounded and unbounded subsequences.
- We'll consider quasiregular $f : \mathbb{R}^d \to \mathbb{R}^d$.

PART 1: Which sequences are orbits?

Start with a sequence $(z_n)_{n\geq 0}$ in \mathbb{C} (or $(x_n)_{n\geq 0}$ in \mathbb{R}^d). Questions:

• Is there a function $f: \mathbb{C} \to \mathbb{C}$ that *realises* the sequence? That is,

$$f^n(z_0)=z_n$$

so that (z_n) is the orbit of z_0 under iteration of f.

• If so, is *f* unique?

Note: some sequences are not orbits. For example, $1, 2, 1, 3, \ldots$ (f(1) = ?).

Answers depend on which class of functions we consider:

- continuous;
- entire (polynomial or transcendental);
- quasiconformal or quasiregular.

Continuous functions

Definition

A sequence $(x_n)_{n\geq 0}$ in \mathbb{R}^d (or \mathbb{C}) is a *candidate orbit* if the following holds: suppose $x \in \mathbb{R}^d$ and that (n_j) is a sequence of integers such that $x_{n_j} \to x$ as $j \to \infty$. Then there exists $x' \in \mathbb{R}^d$ depending only on x such that $x_{n_j+1} \to x'$ as $j \to \infty$.

Note: it follows that, for a candidate orbit, $x_p = x_q$ implies $x_{p+1} = x_{q+1}$. (So 1, 2, 1, 3, ... is not a candidate orbit.)

Theorem (N., Sixsmith)

A sequence $(x_n)_{n\geq 0}$ in \mathbb{R}^d is a candidate orbit if and only if there exists a continuous $f : \mathbb{R}^d \to \mathbb{R}^d$ that realises (x_n) (i.e. $f^n(x_0) = x_n$).

Moreover, f is unique if and only if $\{x_n : n \ge 0\}$ is dense in \mathbb{R}^d .

Some simple terminology is helpful.

A sequence (z_n) in \mathbb{C} (or \mathbb{R}^d) is called ...

- bounded if there is L > 0 such that $|z_n| \leq L$;
- escaping if $z_n \to \infty$ as $n \to \infty$;
- *bungee* if it is not bounded and not escaping;
- *periodic* if there exist $n \neq m$ such that $z_{n+k} = z_{m+k}$ for $k \geq 0$ (so this includes "pre-periodic" or "eventually periodic" sequences).

Which sequences are orbits under entire functions?

Theorem (N., Sixsmith)

- Let (z_n) be a candidate orbit. Then exactly one of the following holds:
- (a) (z_n) is periodic, and is realised by infinitely many transcendental entire functions and infinitely many polynomials.
- (b) (z_n) is escaping, and is realised by infinitely many transcendental entire functions and at most one polynomial.
- (c) (z_n) is bungee, and is realised by at most one entire function and no polynomials.
- (d) (z_n) is bounded and not periodic, and is realised by at most one entire function.

Note 'uniqueness' is settled, but 'existence' question open for polynomials in cases (b) & (d) and for tefs in cases (c) & (d).

The sequence has a finite accumulation point in cases (c) & (d). There are very strong necessary conditions for such a sequence to be the orbit of an entire function.

Examples

From now on, consider only sequences $z_n \rightarrow 0$.

The following candidate orbits cannot be realised by any entire function.

1.
$$(z_n) = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots$$

Here $z_{n+1} = z_n^2$ for $n \ge 2$ so this could only be realised by $f(z) = z^2$. But this fails at the first step: $1^2 \ne \frac{1}{2}$.

- 2. $(z_n) = \frac{1}{2} + \varepsilon_1$, $\frac{1}{4} + \varepsilon_2$, $\frac{1}{16} + \varepsilon_3$, $\frac{1}{256} + \varepsilon_4$, ... where $\varepsilon_n \searrow 0$ fast. Again, can show the "only possibility" is $f(z) = z^2$. But this fails at every step when $\varepsilon_{n+1} < < \varepsilon_n$.
- 3. Take q > 1, $q \notin \mathbb{N}$ and $z_n = \left(\frac{1}{2}\right)^{q^n}$.

If this were realised by entire f with Taylor series $f(z) = a_p z^p + ...$ then we'd find p = q (not an integer). The moral is:

Can we realise more sequences if we consider instead quasiconformal or quasiregular maps?

Quasiregular maps

Informally, a *quasiregular map* $f : \mathbb{R}^d \to \mathbb{R}^d$ is a continuous, sense-preserving map that sends infinitesimal spheres to ellipsoids of bounded eccentricity.

- Quasiregular (qr) maps generalise analytic maps on \mathbb{C} .
- An injective quasiregular map is called *quasiconformal*.
- On the plane, any qr map can be factorised as a composition (analytic) o (quasiconformal).

Next, we will state conditions for a sequence $z_n \rightarrow 0$ to be realised by a quasiregular map — one necessary, then one sufficient.

Realising sequences $z_n \rightarrow 0$ by quasiregular maps

Theorem (N., Sixsmith) — Necessary condition

A sequence $z_n \to 0$ in \mathbb{R}^d is realised by a qr map <u>only if</u> there exist $\mu, \nu, C > 0$ and $n_0 \in \mathbb{N}$ such that, for $n \ge n_0$,

$$\frac{1}{C^2} \left(\frac{|z_n|}{|z_{n+1}|} \right)^{\mu} \le \frac{|z_{n+1}|}{|z_{n+2}|} \le C^2 \left(\frac{|z_n|}{|z_{n+1}|} \right)^{\nu} \text{ whenever } |z_{n+1}| \le |z_n| \quad (1)$$

and

$$\frac{1}{C^2} \left(\frac{|z_{n+1}|}{|z_n|} \right)^{\mu} \le \frac{|z_{n+2}|}{|z_{n+1}|} \le C^2 \left(\frac{|z_{n+1}|}{|z_n|} \right)^{\nu} \text{ whenever } |z_{n+1}| \ge |z_n|.$$
(2)

Theorem (N., Sixsmith) — Sufficient condition

Let $z_n \to 0$ in \mathbb{C} . Suppose there exist μ, ν, C, n_0 such that (1) holds and 0 < D < 1 such that

$$|z_{n+1}| \leq D|z_n|$$
 for $n \geq 0$.

Then (z_n) is realised by a quasiconformal map on \mathbb{C} .

Two remarks on the sufficient condition

- It follows that the examples $z_n \rightarrow 0$ we saw earlier, that could not be realised by entire functions, *can* all be realised by quasiconformal maps.
- The theorem fails if we try to replace

"there exists 0 < D < 1 such that $|z_{n+1}| \leq D|z_n|$ "

by simply

$$||z_{n+1}| < |z_n|.$$

PART 2: Bungee sets

We now return to the usual direction of study. We fix $f : \mathbb{C} \to \mathbb{C}$ or $f : \mathbb{R}^d \to \mathbb{R}^d$ and study the orbits. We can partition space based on the behaviour of orbits as follows:

- the escaping set $I(f) = \{z : f^n(z) \to \infty\};$
- the bounded orbit set $K(f) = BO(f) = \{z : (f^n(z))_{n \ge 0} \text{ is bounded}\};$
- the bungee set BU(f) everything else!

For a trans entire function f on \mathbb{C} , the bungee set is always non-empty, and these sets are related to the Julia set by

$$J(f) = \partial BU(f) = \partial I(f) = \partial BO(f).$$

(Osborne and Sixsmith, Eremenko)

Some definitions for quasiregular maps

A qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ is of *transcendental type* if it has an essential singularity at ∞ ; that is, $\lim_{x \to \infty} f(x)$ does not exist.

Recall that for entire functions on $\mathbb C$ the Julia set is the set of points with the blowing-up property

$$J(f) = \{z : \text{for all nhds } U \text{ of } z, \mathbb{C} \setminus \bigcup_{n \ge 1} f^n(U) \text{ is finite} \}.$$
 (3)

For a qr map on \mathbb{R}^d of trans type, we *define* the Julia set J(f) as

$$ig\{x: ext{ for all nhds } U ext{ of } x, \ \mathbb{R}^d \setminus igcup_{n \geq 1} f^n(U) ext{ has zero conf. capacity}ig\}.$$
 (4)

Then J(f) is non-empty and completely invariant. Moreover, when d = 2, (3) and (4) agree and cap J(f) > 0 (Bergweiler, N.).

Conjecture For any $d \ge 2$, (3) and (4) agree and cap J(f) > 0.

Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a transcendental type qr map.

- Siebert: f has infinitely many periodic points (so $BO(f) \neq \emptyset$).
- Bergweiler, Fletcher, Langley, Meyer: $I(f) \neq \emptyset$.
- Bergweiler, N.: $J(f) \subset \partial I(f) \cap \partial BO(f)$. Examples show inclusion can be strict.

What about the bungee set?

Theorem (N., Sixsmith)

Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be qr of transcendental type.

- $BU(f) \cap J(f)$ is non-empty.
- If cap J(f) > 0, then $J(f) \subset \partial BU(f)$.

Sketch proof that $J(f) \subset \partial BU(f)$ when cap J(f) > 0

- Show that for large r, R > 0 neither $J(f) \cap \{|x| < r\}$ nor $J(f) \cap \{|x| > R\}$ has zero capacity.
- Take U meeting J(f) and aim to use blowing-up property to find a bungee point in $U \cap J(f)$.

Can we show $J(f) = \partial BU(f)$ for qr maps? No...

Theorem (N., Sixsmith)

There is a trans type qr map $f : \mathbb{C} \to \mathbb{C}$ such that $J(f) \neq \partial BU(f)$.

The construction relies on the following (surprising?) result.

Theorem (N., Sixsmith)

There is a quasiconformal map $F \colon \mathbb{C} \to \mathbb{C}$ such that BU(F) is non-empty.

Note the contrast to conformal maps $\mathbb{C} \to \mathbb{C}$ (i.e. $z \mapsto az + b$), which have uninteresting dynamics — certainly no bungee points!

We'll next sketch the idea for the qc map F and then show how it yields the qr map f in the first theorem.

 f(ℍ) ⊂ ℍ, so no "blowing up" in ℍ, so no points of J(f) in ℍ, but certainly ∂BU(f) intersects ℍ.

• Therefore,
$$J(f) \neq \partial BU(f)$$
.