Orbits and bungee sets

Dan Nicks
University of Nottingham

September 2021

Joint work with Dave Sixsmith

Part 1: Orbits

- Usually, given $f: X \rightarrow X$ we study the orbits $\left(f^{n}(x)\right)_{n \geq 0}$ for $x \in X$.
- Now reverse this: Given a sequence, is it an orbit for some f ?

Part 2: Bungee sets

- The bungee set of f is the set of points for which the orbit has both bounded and unbounded subsequences.
- We'll consider quasiregular $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

Part 1: Which sequences are orbits?

Start with a sequence $\left(z_{n}\right)_{n \geq 0}$ in \mathbb{C} (or $\left(x_{n}\right)_{n \geq 0}$ in $\left.\mathbb{R}^{d}\right)$.
Questions:

- Is there a function $f: \mathbb{C} \rightarrow \mathbb{C}$ that realises the sequence? That is,

$$
f^{n}\left(z_{0}\right)=z_{n}
$$

so that $\left(z_{n}\right)$ is the orbit of z_{0} under iteration of f.

- If so, is f unique?

Note: some sequences are not orbits. For example, $1,2,1,3, \ldots(f(1)=$?).
Answers depend on which class of functions we consider:

- continuous;
- entire (polynomial or transcendental);
- quasiconformal or quasiregular.

Continuous functions

Definition

A sequence $\left(x_{n}\right)_{n \geq 0}$ in \mathbb{R}^{d} (or \mathbb{C}) is a candidate orbit if the following holds: suppose $x \in \mathbb{R}^{d}$ and that $\left(n_{j}\right)$ is a sequence of integers such that $x_{n_{j}} \rightarrow x$ as $j \rightarrow \infty$. Then there exists $x^{\prime} \in \mathbb{R}^{d}$ depending only on x such that $x_{n_{j}+1} \rightarrow x^{\prime}$ as $j \rightarrow \infty$.

Note: it follows that, for a candidate orbit, $x_{p}=x_{q}$ implies $x_{p+1}=x_{q+1}$. (So $1,2,1,3, \ldots$ is not a candidate orbit.)

Theorem (N., Sixsmith)

A sequence $\left(x_{n}\right)_{n \geq 0}$ in \mathbb{R}^{d} is a candidate orbit if and only if there exists a continuous $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ that realises $\left(x_{n}\right)$ (i.e. $\left.f^{n}\left(x_{0}\right)=x_{n}\right)$.
Moreover, f is unique if and only if $\left\{x_{n}: n \geq 0\right\}$ is dense in \mathbb{R}^{d}.

Types of sequence

Some simple terminology is helpful.
A sequence $\left(z_{n}\right)$ in \mathbb{C} (or \mathbb{R}^{d}) is called...

- bounded if there is $L>0$ such that $\left|z_{n}\right| \leq L$;
- escaping if $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$;
- bungee if it is not bounded and not escaping;
- periodic if there exist $n \neq m$ such that $z_{n+k}=z_{m+k}$ for $k \geq 0$ (so this includes "pre-periodic" or "eventually periodic" sequences).

Which sequences are orbits under entire functions?

Theorem (N., Sixsmith)

Let $\left(z_{n}\right)$ be a candidate orbit. Then exactly one of the following holds:
(a) (z_{n}) is periodic, and is realised by infinitely many transcendental entire functions and infinitely many polynomials.
(b) $\left(z_{n}\right)$ is escaping, and is realised by infinitely many transcendental entire functions and at most one polynomial.
(c) $\left(z_{n}\right)$ is bungee, and is realised by at most one entire function and no polynomials.
(d) $\left(z_{n}\right)$ is bounded and not periodic, and is realised by at most one entire function.

Note 'uniqueness' is settled, but 'existence' question open for polynomials in cases (b) \& (d) and for tefs in cases (c) \& (d).

The sequence has a finite accumulation point in cases (c) \& (d). There are very strong necessary conditions for such a sequence to be the orbit of an entire function.

Examples

From now on, consider only sequences $z_{n} \rightarrow 0$.
The following candidate orbits cannot be realised by any entire function.

1. $\left(z_{n}\right)=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots$ Here $z_{n+1}=z_{n}^{2}$ for $n \geq 2$ so this could only be realised by $f(z)=z^{2}$. But this fails at the first step: $1^{2} \neq \frac{1}{2}$.
2. $\left(z_{n}\right)=\frac{1}{2}+\varepsilon_{1}, \frac{1}{4}+\varepsilon_{2}, \frac{1}{16}+\varepsilon_{3}, \frac{1}{256}+\varepsilon_{4}, \ldots$ where $\varepsilon_{n} \searrow 0$ fast. Again, can show the "only possibility" is $f(z)=z^{2}$. But this fails at every step when $\varepsilon_{n+1} \ll \varepsilon_{n}$.
3. Take $q>1, q \notin \mathbb{N}$ and $z_{n}=\left(\frac{1}{2}\right)^{q^{n}}$.

If this were realised by entire f with Taylor series $f(z)=a_{p} z^{p}+\ldots$ then we'd find $p=q$ (not an integer).

The moral is:
"In general, analytic functions are too rigid to realise sequences with accumulation points."

Can we realise more sequences if we consider instead quasiconformal or quasiregular maps?

Quasiregular maps

Informally, a quasiregular map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a continuous, sense-preserving map that sends infinitesimal spheres to ellipsoids of bounded eccentricity.

- Quasiregular (qr) maps generalise analytic maps on \mathbb{C}.
- An injective quasiregular map is called quasiconformal.
- On the plane, any qr map can be factorised as a composition (analytic) \circ (quasiconformal).

Next, we will state conditions for a sequence $z_{n} \rightarrow 0$ to be realised by a quasiregular map - one necessary, then one sufficient.

Realising sequences $z_{n} \rightarrow 0$ by quasiregular maps

Theorem (N., Sixsmith) - Necessary condition
A sequence $z_{n} \rightarrow 0$ in \mathbb{R}^{d} is realised by a qr map only if there exist $\mu, \nu, C>0$ and $n_{0} \in \mathbb{N}$ such that, for $n \geq n_{0}$,

$$
\begin{equation*}
\frac{1}{C^{2}}\left(\frac{\left|z_{n}\right|}{\left|z_{n+1}\right|}\right)^{\mu} \leq \frac{\left|z_{n+1}\right|}{\left|z_{n+2}\right|} \leq C^{2}\left(\frac{\left|z_{n}\right|}{\left|z_{n+1}\right|}\right)^{\nu} \text { whenever }\left|z_{n+1}\right| \leq\left|z_{n}\right| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{C^{2}}\left(\frac{\left|z_{n+1}\right|}{\left|z_{n}\right|}\right)^{\mu} \leq \frac{\left|z_{n+2}\right|}{\left|z_{n+1}\right|} \leq C^{2}\left(\frac{\left|z_{n+1}\right|}{\left|z_{n}\right|}\right)^{\nu} \text { whenever }\left|z_{n+1}\right| \geq\left|z_{n}\right| \tag{2}
\end{equation*}
$$

Theorem (N., Sixsmith) - Sufficient condition

Let $z_{n} \rightarrow 0$ in \mathbb{C}. Suppose there exist μ, ν, C, n_{0} such that (1) holds and $0<D<1$ such that

$$
\left|z_{n+1}\right| \leq D\left|z_{n}\right| \quad \text { for } n \geq 0 \text {. }
$$

Then $\left(z_{n}\right)$ is realised by a quasiconformal map on \mathbb{C}.

Two remarks on the sufficient condition

- It follows that the examples $z_{n} \rightarrow 0$ we saw earlier, that could not be realised by entire functions, can all be realised by quasiconformal maps.
- The theorem fails if we try to replace

$$
\text { "there exists } 0<D<1 \text { such that }\left|z_{n+1}\right| \leq D\left|z_{n}\right| \text { " }
$$

by simply

$$
"\left|z_{n+1}\right|<\left|z_{n}\right| . "
$$

Part 2: Bungee sets

We now return to the usual direction of study. We fix $f: \mathbb{C} \rightarrow \mathbb{C}$ or $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and study the orbits. We can partition space based on the behaviour of orbits as follows:

- the escaping set $I(f)=\left\{z: f^{n}(z) \rightarrow \infty\right\}$;
- the bounded orbit set $K(f)=B O(f)=\left\{z:\left(f^{n}(z)\right)_{n \geq 0}\right.$ is bounded $\}$;
- the bungee set $B U(f)$ - everything else!

For a trans entire function f on \mathbb{C}, the bungee set is always non-empty, and these sets are related to the Julia set by

$$
J(f)=\partial B U(f)=\partial I(f)=\partial B O(f)
$$

(Osborne and Sixsmith, Eremenko)

Some definitions for quasiregular maps

A qr map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is of transcendental type if it has an essential singularity at ∞; that is, $\lim _{x \rightarrow \infty} f(x)$ does not exist.

Recall that for entire functions on \mathbb{C} the Julia set is the set of points with the blowing-up property

$$
\begin{equation*}
J(f)=\left\{z: \text { for all nhds } U \text { of } z, \quad \mathbb{C} \backslash \bigcup_{n \geq 1} f^{n}(U) \text { is finite }\right\} . \tag{3}
\end{equation*}
$$

For a qr map on \mathbb{R}^{d} of trans type, we define the Julia set $J(f)$ as

$$
\begin{equation*}
\left\{x: \text { for all nhds } U \text { of } x, \mathbb{R}^{d} \backslash \bigcup_{n>1} f^{n}(U) \text { has zero conf. capacity }\right\} . \tag{4}
\end{equation*}
$$

Then $J(f)$ is non-empty and completely invariant. Moreover, when $d=2$, (3) and (4) agree and cap $J(f)>0$ (Bergweiler, N.).

Conjecture For any $d \geq 2$, (3) and (4) agree and cap $J(f)>0$.

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a transcendental type qr map.

- Siebert: f has infinitely many periodic points (so $B O(f) \neq \emptyset$).
- Bergweiler, Fletcher, Langley, Meyer: $I(f) \neq \emptyset$.
- Bergweiler, N.: $J(f) \subset \partial I(f) \cap \partial B O(f)$. Examples show inclusion can be strict.

What about the bungee set?

Theorem (N., Sixsmith)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be qr of transcendental type.

- $B U(f) \cap J(f)$ is non-empty.
- If cap $J(f)>0$, then $J(f) \subset \partial B U(f)$.

Sketch proof that $J(f) \subset \partial B U(f)$ when cap $J(f)>0$

- Show that for large $r, R>0$ neither $J(f) \cap\{|x|<r\}$ nor $J(f) \cap\{|x|>R\}$ has zero capacity.
- Take U meeting $J(f)$ and aim to use blowing-up property to find a bungee point in $U \cap J(f)$.

Can we show $J(f)=\partial B U(f)$ for qr maps? No...
Theorem (N., Sixsmith)
There is a trans type qr map $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $J(f) \neq \partial B U(f)$.

The construction relies on the following (surprising?) result.

Theorem (N., Sixsmith)

There is a quasiconformal map $F: \mathbb{C} \rightarrow \mathbb{C}$ such that $B U(F)$ is non-empty.
Note the contrast to conformal maps $\mathbb{C} \rightarrow \mathbb{C}$ (i.e. $z \mapsto a z+b)$, which have uninteresting dynamics - certainly no bungee points!

We'll next sketch the idea for the qc map F and then show how it yields the qr map f in the first theorem.

A qc map F with bungee points

A trans type qr map f with $J(f) \neq \partial B U(f)$ $\mathbb{H}=\{z: \operatorname{lm} z>0\} \quad$ "snakes on a half-plane"

- $f(\mathbb{H}) \subset \mathbb{H}$, so no "blowing up" in \mathbb{H}, so no points of $J(f)$ in \mathbb{H}, but certainly $\partial B U(f)$ intersects \mathbb{H}.
- Therefore, $J(f) \neq \partial B U(f)$.

