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Part 1: Orbits

Usually, given f : X → X we study the orbits (f n(x))n≥0 for x ∈ X .

Now reverse this: Given a sequence, is it an orbit for some f ?

Part 2: Bungee sets

The bungee set of f is the set of points for which the orbit has both
bounded and unbounded subsequences.

We’ll consider quasiregular f : Rd → R
d .



Part 1: Which sequences are orbits?

Start with a sequence (zn)n≥0 in C (or (xn)n≥0 in R
d).

Questions:

Is there a function f : C → C that realises the sequence? That is,

f n(z0) = zn

so that (zn) is the orbit of z0 under iteration of f .

If so, is f unique?

Note: some sequences are not orbits. For example, 1, 2, 1, 3, . . . (f (1) =?).

Answers depend on which class of functions we consider:

continuous;

entire (polynomial or transcendental);

quasiconformal or quasiregular.



Continuous functions

Definition

A sequence (xn)n≥0 in R
d (or C) is a candidate orbit if the following

holds: suppose x ∈ R
d and that (nj) is a sequence of integers such that

xnj → x as j → ∞. Then there exists x ′ ∈ R
d depending only on x such

that xnj+1 → x ′ as j → ∞.

Note: it follows that, for a candidate orbit, xp = xq implies xp+1 = xq+1.
(So 1, 2, 1, 3, . . . is not a candidate orbit.)

Theorem (N., Sixsmith)

A sequence (xn)n≥0 in R
d is a candidate orbit if and only if there exists a

continuous f : Rd → R
d that realises (xn) (i.e. f n(x0) = xn).

Moreover, f is unique if and only if {xn : n ≥ 0} is dense in R
d .



Types of sequence

Some simple terminology is helpful.

A sequence (zn) in C (or Rd) is called . . .

bounded if there is L > 0 such that |zn| ≤ L;

escaping if zn → ∞ as n → ∞;

bungee if it is not bounded and not escaping;

periodic if there exist n 6= m such that zn+k = zm+k for k ≥ 0
(so this includes “pre-periodic” or “eventually periodic” sequences).



Which sequences are orbits under entire functions?

Theorem (N., Sixsmith)

Let (zn) be a candidate orbit. Then exactly one of the following holds:

(a) (zn) is periodic, and is realised by infinitely many transcendental
entire functions and infinitely many polynomials.

(b) (zn) is escaping, and is realised by infinitely many transcendental
entire functions and at most one polynomial.

(c) (zn) is bungee, and is realised by at most one entire function and no
polynomials.

(d) (zn) is bounded and not periodic, and is realised by at most one
entire function.

Note ‘uniqueness’ is settled, but ‘existence’ question open for polynomials
in cases (b) & (d) and for tefs in cases (c) & (d).

The sequence has a finite accumulation point in cases (c) & (d). There
are very strong necessary conditions for such a sequence to be the orbit of
an entire function.



Examples

From now on, consider only sequences zn → 0.
The following candidate orbits cannot be realised by any entire function.

1. (zn) = 1, 1
2
, 1
4
, 1
16
, 1
256

, . . .

Here zn+1 = zn
2 for n ≥ 2 so this could only be realised by f (z) = z2.

But this fails at the first step: 12 6= 1
2
.

2. (zn) =
1
2
+ ε1,

1
4
+ ε2,

1
16

+ ε3,
1

256
+ ε4, . . . where εn ↘ 0 fast.

Again, can show the “only possibility” is f (z) = z2. But this fails at
every step when εn+1 << εn.

3. Take q > 1, q /∈ N and zn =
(

1
2

)qn

.

If this were realised by entire f with Taylor series f (z) = apz
p + . . .

then we’d find p = q (not an integer).



The moral is:
“In general, analytic functions are too rigid to realise sequences

with accumulation points.”

Can we realise more sequences if we consider instead quasiconformal or
quasiregular maps?



Quasiregular maps

Informally, a quasiregular map f : Rd → R
d is a continuous,

sense-preserving map that sends infinitesimal spheres to ellipsoids of
bounded eccentricity.

Quasiregular (qr) maps generalise analytic maps on C.

An injective quasiregular map is called quasiconformal.

On the plane, any qr map can be factorised as a composition
(analytic) ◦ (quasiconformal).

Next, we will state conditions for a sequence zn → 0 to be realised by a
quasiregular map — one necessary, then one sufficient.



Realising sequences zn → 0 by quasiregular maps

Theorem (N., Sixsmith) — Necessary condition

A sequence zn → 0 in R
d is realised by a qr map only if there exist

µ, ν,C > 0 and n0 ∈ N such that, for n ≥ n0,

1

C 2

(

|zn|

|zn+1|

)

µ

≤
|zn+1|

|zn+2|
≤ C 2

(

|zn|

|zn+1|

)

ν

whenever |zn+1| ≤ |zn| (1)

and

1

C 2

(

|zn+1|

|zn|

)

µ

≤
|zn+2|

|zn+1|
≤ C 2

(

|zn+1|

|zn|

)

ν

whenever |zn+1| ≥ |zn|. (2)

Theorem (N., Sixsmith) — Sufficient condition

Let zn → 0 in C. Suppose there exist µ, ν,C , n0 such that (1) holds and
0 < D < 1 such that

|zn+1| ≤ D|zn| for n ≥ 0.

Then (zn) is realised by a quasiconformal map on C.



Two remarks on the sufficient condition

It follows that the examples zn → 0 we saw earlier, that could not be
realised by entire functions, can all be realised by quasiconformal
maps.

The theorem fails if we try to replace

“there exists 0 < D < 1 such that |zn+1| ≤ D|zn|”

by simply
“|zn+1| < |zn|.”



Part 2: Bungee sets

We now return to the usual direction of study. We fix f : C → C or
f : Rd → R

d and study the orbits. We can partition space based on the
behaviour of orbits as follows:

the escaping set I (f ) = {z : f n(z) → ∞};

the bounded orbit set K (f ) = BO(f ) = {z : (f n(z))n≥0 is bounded};

the bungee set BU(f ) — everything else!

For a trans entire function f on C, the bungee set is always non-empty,
and these sets are related to the Julia set by

J(f ) = ∂BU(f ) = ∂I (f ) = ∂BO(f ).

(Osborne and Sixsmith, Eremenko)



Some definitions for quasiregular maps
A qr map f : Rd → R

d is of transcendental type if it has an essential
singularity at ∞; that is, lim

x→∞
f (x) does not exist.

Recall that for entire functions on C the Julia set is the set of points with
the blowing-up property

J(f ) =
{

z : for all nhds U of z , C \
⋃

n≥1

f n(U) is finite
}

. (3)

For a qr map on R
d of trans type, we define the Julia set J(f ) as

{

x : for all nhds U of x , R
d \

⋃

n≥1

f n(U) has zero conf. capacity
}

. (4)

Then J(f ) is non-empty and completely invariant. Moreover, when d = 2,
(3) and (4) agree and cap J(f ) > 0 (Bergweiler, N.).

Conjecture For any d ≥ 2, (3) and (4) agree and cap J(f ) > 0.



Let f : Rd → R
d be a transcendental type qr map.

Siebert: f has infinitely many periodic points (so BO(f ) 6= ∅).

Bergweiler, Fletcher, Langley, Meyer: I (f ) 6= ∅.

Bergweiler, N.: J(f ) ⊂ ∂I (f ) ∩ ∂BO(f ).
Examples show inclusion can be strict.

What about the bungee set?

Theorem (N., Sixsmith)

Let f : Rd → R
d be qr of transcendental type.

BU(f ) ∩ J(f ) is non-empty.

If cap J(f ) > 0, then J(f ) ⊂ ∂BU(f ).



Sketch proof that J(f ) ⊂ ∂BU(f ) when cap J(f ) > 0

Show that for large r ,R > 0 neither J(f ) ∩ {|x | < r} nor
J(f ) ∩ {|x | > R} has zero capacity.

Take U meeting J(f ) and aim to use blowing-up property to find a
bungee point in U ∩ J(f ).



Can we show J(f ) = ∂BU(f ) for qr maps? No...

Theorem (N., Sixsmith)

There is a trans type qr map f : C → C such that J(f ) 6= ∂BU(f ).

The construction relies on the following (surprising?) result.

Theorem (N., Sixsmith)

There is a quasiconformal map F : C → C such that BU(F ) is non-empty.

Note the contrast to conformal maps C → C (i.e. z 7→ az + b), which
have uninteresting dynamics — certainly no bungee points!

We’ll next sketch the idea for the qc map F and then show how it yields
the qr map f in the first theorem.



A qc map F with bungee points



A trans type qr map f with J(f ) 6= ∂BU(f )

H = {z : Im z > 0} “snakes on a half-plane”

f (H) ⊂ H, so no “blowing up” in H, so no points of J(f ) in H,
but certainly ∂BU(f ) intersects H.

Therefore, J(f ) 6= ∂BU(f ).


